-~ AD-A259
LT IIIIHIIIIIH'IIII

DTIC

ELECTE
FEB 5 1993,

Representation and Recognition c
of Free-Form Surfaces

Herve Delingette Martial Hebert Katsushi Ikeuchi

November 1992
CMU-CS-92-214

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

| DISTRIBUTION STATSMENT K
i Approved for puniip reiecse
‘o D¥ouncn Unlimired

——

©1992 Camegie Mellon

This research was supported in part by the DARPA Image Understanding Program, through
ARPA Order No. 4976, and monitored by the Air Force Avionics Laboratory under contract
F33615-87-C-1499, and in part by DARPA, under contract DACA 76-89-C-0014 monitored by
the Army Topographic Engineering Center.

The views and conclusions contained in this report are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Defensc
Advanced Projects Agency or the U.S. Government.

9301935
93 2 2 024 LT

Keywords: Object Recognition, Range Data, Deformable Surfaces, Free-Form
Surfaces, Spherical Representations

Representation and Recognition
of Free-Form Surfaces

Martial Hebert Katsushi Ikeuchi

Herve Delingette
November 1992
CMU-CS-92-214
“ivenSiom Fop
Computer Science Department ya ,,” “?
Camegie Mellon University ’“; !:: il !
Pi h, PA 1521 ' oo
ttsburgh, PA 15213 Unviamoune od p ;
 Justifleatien | !
| Distribetien/ -
- e ——i——— . -
i__Avallatility Cogesg ;
f' Avatl ardjop T
Dist Special "
PRV |
1
©1992 Camegie Mellon \DTIC QUALITY INSPECTED &

This research was supported in part by the DARPA Image Understanding Program, through
ARPA Order No. 4976, and monitored by the Air Force Avionics Laboratory under contract
F33615-87-C-1499, and in part by DARPA, under contract DACA 76-89-C-0014 monitored by
the Army Topographic Engineering Center.

The views and conclusions contained in this report are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Defensc

Advanced Projects Agency or the U.S. Government.

ABSTRACT

We introduce a new surface representation for recognizing curved objects. Our approach
begins by representing an object by a discrete mesh of points built from range data or from
a geometric model of the object. The mesh is computed from the data by deforming a stan-
dard shaped mesh, for example, an ellipsoid, until it fits the surface of the object. We
define local regularity constraints that the mesh must satisfy. We then define a canonical
mapping between the mesh describing the object and a standard spherical mesh. A surface
curvature index that is pose-invariant is stored at every node of the mesh. We use this
object representation for recognition by comparing the spherical model of a reference
object with the model extracted from a new observed scene. We show how the similarity
between reference model and observed data can be evaluated and we show how the pose
of the reference object in the observed scene can be easily computed using this representa-
tion.

We present results on real range images which show that this approach to modelling and
recognizing three-dimensional objects has three main advantages: First, it is applicable to
complex curved surfaces that cannot be handled by conventional techniques. Second, it
reduces the recognition problem to the computation of similarity between spherical distri-
butions; in particular, the recognition algorithm does not require any combinatorial search.
Finally, even though it is based on a spherical mapping, the approach can handle occlu-
sions and partial views.

Contents

Introduction
Intrinsic Representation of 2-D Curves 8
3 Intrinsic Representation of 3-D Surfaces 10
3.1 Triangulation and Duality 11
32 Global Regularity and Mesh Topology 1
33 Local Regularity 13
34 Discrete Curvature Measure: Simplex Angle .13
35 Simplex Angle Image 15
36 Altemnate Definition of Simplex Angle 16
4 Building Intrinsic Representations from 3-D Data 18
4.1 Mesh Deformation 19
42 Initialization 20
43 From Mesh to SAI 20
44 Reconstructing Shape from SA] 24
] Matching Objects 24
5.1 Finding the BeSt ROMAtONc.v.ceeuccreeenrenraraeseressnnssessssessssrssssossssssssssssssaaranssasssssssaasssssesssss 24
52 Computing the Full Transformation 25
53 Reducing the Search Space 26
54 Example 27
6 Partial Views and Occlusion 29
7 Conclusion 36
References 38

List of Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

Object Recognition Using SAIS.......cocveininninininiiiiniensinsncesncsissenens 7
Discrete Curvature Measure of a 2-D Curve.........cococccovncernnincnnnsinncennne 9
L0CAl REGUIATILYccveveririinincrennnensirisssssssssnantssssssesesisssssssssasssesesesrasssssess 9
Mapping Between Shape and Circular Representation Space................... 10
Comparing Contours in Representation Space...........ooouceeusueurecnssessnsuenenss 10
Triangulation and Dual Meshcoinnnnrnninninencncsnescisessenesenes 11
ReguIar MESRES........cou ittt ssssssnssssssssssnneseseesenseses 12
Meshes from Recursive Subdivision of Dodecahedron................cccuueuee. 12
Local Regularity in Three Dimensions.........cccoiervecenninnnieenenscsicssnenenns 13
Definition of the Simplex Angle........c.covnniivmininnniiiii s 14
Typical Values of the Simplex Angle.........cooveevniennnniinnnciiiineninnene. 14
Definition of Alternate Curvature Angle K.........coccceeeeeeveercenenruereecnccrnasene 16
Reference Configuration for the Graphs of Figure 14 and Figure 15........ 17
Values of ¢ and x as Functions of Distance to Reference Plane 17
Values of ¢ and x as Functions of Distance to Reference Plane 18
Summary of Building SAI from Input Object Description.............c.cccou.e.. 21
Building SAI from Range Datacoomeveumeeemmesssenssssesssssssssessessssenne 22
Building the SAI from a Polyhedral Model..........c.ccccneeninninncncnennenennn. 23
ROtAHON ANGLEScveeeerirannentnenentiiacsesnsenrsssnsssesssssisssessssssssessesasnsassses 25
Three Views of the Object of Figure 17 in a Different Orientation........... 28
Relative Positions of the Models Before Matching.........c.cccorvceeveennnnncne. 28
Graph of Distance Between SAIls as a Functionof ¢ and 0 28
Relative Positions of the Models after Matching.........cocceeeeeuereeeseneecrannnes 29
Display of the Model in the Computed Posecccccoruruiecrrcninsecrennereruenen. 29
Matching Partial Representation in Two Dimensionsc.ccceeceeieccnneae 31
SAI Scaling AlGOrithncccourienniinirinienistirinnsnisenisiessescseseseseenees 31
INPUE IMAEEooeeereeerieieietc ittt st se s e sesnae s seeanns 33
Reference Model............coemenniccinnnnnnnane. ereeeaenie e st 33
Cross Sections of Registered Model and Scene.........c.coocevvveecvenennninenncnen. 33
Sum of Squared Differences of SAls as Function of Rotation Angles......34
Display of Model Using the Pose Computed from the Matching.............. 34
INPUE IMAGE ...ttt sttt sa s saes e st et cnsesasasanes 35
Cross Sections of Registered Model and Scene................eouvmmeeeemmnreemsennne 35
Display of Model Using the Pose Computed from the Matching.............. 36
Effect of Occlusion-Compensating Scaling on SAI of Observed Object..36
Geometry of Simplex Angle Computationccceeverecncnvircenrecserscnnenes 40
Configuration after Spherical INVErSiON........cccovececrerenirennncrenisinenesnnescersannes 41
Relation Between j and the Circumscribed Circle..........ccccocevrnininnannnnn. 42

1 Introduction

Recognition of curved objects is one of the key issues in computer vision. It is a problem
not only in traditional applications such as industrial object recognition and face recogni-
tion but also in emerging applications such as navigation and manipulation in natural envi-
ronments. To aid in overcoming this problem, we have designed a new approach that uses
as a starting point a combination of several traditional object recognition and representa-
tion methods. :

Traditionally, there are two ways to represent objects for recognition: local and global.
Local methods attempt to represent objects as a set of primitives such as faces or edges.
Most early local methods handle polyhedral objects and report effective and encouraging
results. Representative systems include [12][20][14]. Few systems can handle curved sur-
faces. Some systems include early work in which primitive surfaces enclosed by orienta-
tion discontinuity boundaries are extracted from range data [21]. Other systems determine
primitive surfaces which satisfy planar or quadric equations [9]. Techniques based on dif-
ferential geometry such as [3] segment range images using Gaussian curvatures. More
recent local techniques use points of interest and edges of surfaces to match observed sur-
faces with stored representation [23]. These local methods, however, are noise-sensitive
and are still limited in reliably extracting primitives of curved objects from input images.

The global methods assume one particular coordinate system attached to an object and
represent the object as an implicit or parametric function in this coordinate system. The
resulting representation is global in that the implicit function represents the entire shape of
the object or of a large portion of the object. The generalized cylinder (GC) is a represen-
tative of this group. A generalized cylinder is defined as an axis, a cross-sectional shape
and its sweeping rule along the axis. Although encouraging results have been obtained in
recognizing GCs in intensity images by minimizing the distance between observed and
predicted occluding edges, using generalized cylinders for recognition is difficult due to
the difficulty of extracting GC parameters from input images.

Superquadrics (SQ) representation also belongs to the class of global representations
[22]. Superquadrics are generalizations of ellipsoids. Object representations are built by
fitting an implicit equation to a set of input data points. Recognition using SQs proceeds
by comparing the parameters of the SQs extracted from the scene with the SQs stored in
the model. The SQs represent a limited set of shapes which can be extended by adding
parameters to the generic implicit equation of SQs. This limitation has the undesirable
effect of making the fitting process much more expensive and numerically unstable. A
possible extension is to segment objects into sets of superquadrics [10], although the com-
putational complexity of the scene analysis may become prohibitive. An interesting
attempt to handle a large class of natural objects in discussed in [4] in which multiple sur-
face representations, ranging from quadrics to superquadrics to generalized cylinders, are
used. The type of representation is selected based on the level of detail available from the
range image.

EGI and CEGI map surface orientation distributions to the Gaussian sphere [13][18][15).
Since the Gauss map is independent on translation, the representation is quite suitable to
handle convex curved objects. In this case, recognition procceds by finding the rotation

5

that maximizes the correlation between two EGIs [13][7]. However, when part of the
object is occluded, those techniques cannot reliably extract the representation.

Recently, new approaches for modeling objects have been developed. These approaches
are based on the idea of fitting a bounded algebraic surface of fixed degree to a set of data
points [24][25). With this representation, recognition proceeds by comparing the polyno-
mials describing observed and stored surfaces, although it is not yet clear how the compar-
ison would be performed. Using algebraic surfaces is convenient because powerful tools
can be used to compute limbs and other properties of the object. Recognition proceeds by
comparing invariant properties computed from the algebraic equations of observed and
reference surfaces [11]. Although encouraging results have been obtained in this area,
more research is needed in the areas of bounding constraints, convergence of surface fit-
ting, and recognition before this approach becomes practical. Occlusion remains a prob-
lem since there is no guarantee that the polynomial computed from a partial view is
similar to the polynomial computed from a complete model of the object. For a survey of
other techniques can be used for global surface fitting, see [5].

All these approaches attempt to fit some known parametric surface, either locally or glo-
bally, to the object. Consequently, these approaches tend to limit the set of shapes that can
be represented and recognized. Moreover, the cost of building the representations from
data sets increases rapidly as parameters are added to expand the set of allowable shapes.
To address these two problems, another class of approaches attempts to match sets of
points directly without any prior surface fitting. An example is the work by Besl [2] in
which the distance between point sets is computed and minimized to find the best transfor-
mation between model and scene. This approach has many advantages since it does not
require any surface segmentation or surface fitting and it does not require to search for an
explicit correspondence between model and scene features for recognition. Recent results
show that these algorithms can perform remarkably well by using new numerical tech-
niques for minimizing distances between two arbitrary point sets. The main drawback of
this approach is that, like any minimization technique, it is not guaranteed to find the glo-
bal optimum especially if the scene contains occlusions, different point density in model
and scene representation, and large number of extra points from different objects.

Our approach begins with a combination of the point set matching and of the original
EGI approach. As in the case of the point set matching, we want to avoid fitting analytical
surfaces to represent an object. Instead, we use a representation that simply consists of a
collection of points, or nodes, arranged in a mesh covering the entire surface of the object.
This has the advantage that the object can have any arbitrary shape, as long as that shape is
topologically equivalent to the sphere. To avoid problems with variable density of nodes
on the mesh, we need to define regularity constraints that must be enforced when the mesh
is built. Constructing meshes that fit input data and that satisfy some constraints is possible
based on the optimization techniques originally introduced in [26] and [16]. We use an
extension of the deformable surfaces algorithms introduced in [8] to compute the meshes.
As in the EGI algorithms, each node of the mesh is mapped onto a regular mesh on the
unit sphere, and a quantity that reflects the local surface curvature at the node is stored at
the corresponding node on the sphere. Instead of using a discrete approximation of the
curvature, we develop a new curvature indicator, the simplex angle, which is entirely
defined from a node and its neighbors in the mesh without any reference to the underlying

6

continuous surface. We call the corresponding spherical representation the Simplex Angle
Image (SAI). Finally, we define the regularity constraints such that if ¢ is the mesh repre-
senting an object, and M"is the mesh representing the same object after transformation by
a combination of rotation, translation, and scaling, then the corresponding distributions of
simplex angles on the spherical representations .$ and S’ are the same up to a rotation. In
other words, the SAI is an invariant representation. Therefore, to determine whether two
objects are the same, we need only compare the corresponding spherical distributions. The
overall approach is illustrated in Figure 1: A regular mesh is computed from input object
description, sensor data or CAD model, simplex angle is computed at each node of the
meshes and the meshes are mapped onto a sphere, the SAIL If a rotation between the two
spherical images exists, the two meshes correspond to the same object. This approach is
similar in principle to the EGI approach. However, one fundamental difference is that a
unique mesh, up to rotation, translation and scale, can be reconstructed from a given SAIL
In the case of the EGI, this property is true only for convex objects. Another fundamental
difference is that the SAI preserves connectivity in that patches that are connected on the
surface of the input object are still connected in the spherical representation. The latter is
the main reason why our approach can handle arbitrary non-convex objects. Connectivity
conservation is also the reason why the SAI can be used for recognition even in the pres-
ence of significant occlusion, as we will see later in the paper, whereas EGI and other glo-
bal representation cannot.

Regular mesh
Transformation * —mﬁ',',u,'a"'.'on = == Spherical mapping sl
(Rotataom’n'anslanon Scale)

Object Regular Mesh SAI

Figure 1 Object Recognition Using SAIs

Another way to describe the properties of the SAl is in terms of intrinsic coordinate sys-
tems. An intrinsic coordinate is such that any given surface point has the same coordinates
regardless of the orientation, position, and scale of the underlying object. In the case of
two-dimensional contours, intrinsic coordinate systems are very easy to define. For exam-
ple, they are the basis of geometric hashing techniques [17]. For three-dimensional sur-
faces, a general definition of intrinsic coordinate systems on curved objects is much more
difficult to define. For example, the geodesics of a surface can be used to define an intrin-
sic coordinate system. Still other efforts focus on lines of curvatures and other differential
geometry invariants [6]). The problem with these approaches is that they are based on defi-

nitions and properties that are valid for continuous surfaces, whereas we typically have to
handle discrete surfaces from sensor data.

To describe our approach, we have organized the paper as follows. In Section 2, we
describe a simple representation of closed 2-D curves which then extend to three dimen-
sional surfaces in Section 3. In both sections, we investigate the notions of global and
local regularity, and of simplex angle. The two-dimensional representation is fairly stan-
dard and is used here only as introduction to the definition of the equivalent representation
in three dimensions. In Section 4, we show how to obtain SAIs from range data. In Section
5, we describe the SAI matching. In Sections 3 to 5 we describe the fundamentals of the
SAI algorithms in the case of complete object models. We address the problem of occlu-
sion and partial models in Section 6. In that section, we also present several results of rec-
ognition in complex scenes and a discussion of performance and robustness of the
recognition algorithm.

2 Intrinsic Representation of 2-D Curves

A standard approach to representing and recognizing contours is to approximate con-
tours by polygons, and to compute a quantity that is related to the curvature of the under-
lying curve. The similarity between contours can then be evaluated by comparing the
distribution of curvature measurement at the vertices of the polygonal representations.
Under certain conditions, the curvature distribution can be mapped unambiguously on the
unit circle, allowing for a representation that is independent of orientation and position of
the contour. In this section, we introduce the basic concepts that can be used to manipulate
polygonal representations of contours. Starting with the definition of a curvature indicator,
we then define conditions of local and global regularity for building intrinsic representa-
tions of contours. The concepts discussed in this section are well known and have been
studied and applied extensively in previous works. Qur purpose here is to introduce them
in a way that facilitates their extension to three-dimensional surfaces. In particular, the cir-
cular mapping is equivalent to the classical @-s representation.

Rather than attempting to approximate the curvature of a discrete curve at each node of
the polygonal approximation, we use a different quantity, the angle ¢ between consecutive
_segments (Figure 2), which is related to the curvature but has more desirable properties in
dealing with discrete representations. The relation between ¢ and the curvature k is
k=~@/1 asl becomes small, or, equivalently, as the density of points increases. Like
the curvature, the angle ¢ is independent of rotation and translation. Unlike the curvature,
¢ is also independent of scaling.

@) (b)

Figure 2 Discrete Curvature Measure of a 2-D Curve

One problem is that if the lengths of the segments representing the curve are allowed to
vary, the value of ¢ depends not only on the shape of the curve but also on the distribution
of points on the curve. In particular, it is important for the same curve shape to generate
the same value of @ to unable the comparison of discrete curves. One way to avoid this
problem is to impose a local regularity condition on the distribution of vertices. The local
regularity condition simply states that all the segments must have the same length. This
can be restated as a local property by saying that the length of a segment must be equal to
the length of each neighboring segments. Another geometric definition of this condition is
illustrated in Figure 3. The condition that the length of the two segments PP; and PP, are
the same is equivalent to the condition that the projection of node P on the line joining its
two neighbors P; and P, coincides with the center of P; and P;. This is obviously a more
complicated way of formulating the simple regularity condition, but it will become useful
when we extend this notion to three dimensions. One consequence of the regularity condi-
tion is that there is only one degree of freedom in the polygonal representation in that, for
a given number of vertices, specifying one vertex on the curve determines uniquely the
locations of all the other nodes along the curve.

Figure 3 Local Regularity

The last step in representing two-dimensional contours is to build a circular representa-
tion that can be used for recognizing contours. Let us assume that the contour is divided
into N segments with vertices P;,..Py, and with corresponding angles @;,..@y. Let us
divide the unit circle using N equally spaced vertices C;,.,Cy. Finally, let us store the
angle @; associated with P; at the corresponding circle point C; (Figure 4). The circular
representation of the contour is invariant by rotation, translation, and scaling. In other
words, given the position of two vertices, a circular representation defines a unique polyg-
onal contour. The two vertices are necessary to define the rotation, translation, and scaling.
Conversely, as the density of points becomes large, the circular representations of two
instances of the same contour are identical up to a rotation of the unit sphere. This prop-
erty allows for comparing contours by deciding that two contours are identical if there

9

exists a rotation of the unit circle that brings their representation in correspondence (Fig-
ure 5). The unicity property is true because of the local regularity condition and because of
the invariance of @. Also, when comparing contours, the distribution of the vertices C; on
the circle must be uniform, that is the distance between consecutive vertices on the unit
circle is constant. We refer to this property as global regularity. Global regularity can
always be achieved in the case of planar curves. We mention it here because it becomes a
non-trivial notion when we try to extend the discrete representation to 3-D surfaces.

original shape representation space

Figure 4 Mapping Between Shape and Circular Representation Space

contours circular representations

Figure 5§ Comparing Contours in Representation Space

3 Intrinsic Representation of 3-D Surfaces

In this section we extend the concepts of curvature indicator, local and global regularity,
and circular representation to three-dimensional surfaces. We consider the case of repre-
senting surfaces topologically equivalent to the sphere. (Cases in which only part of the
surface is visible will be addressed in Section 6.) We follow the same approach as for two-

10

dimensional contours. We first define a discrete representation of surfaces, the equivalent
of the polygonal representation, in Section 3.1. We introduce the three-dimensional equiv-
alent of the concepts of global and local regularity in Sections 3.2 and 3.3, respectively. In
Section 3.4, we propose a new indicator of curvature, the simplex angle, that is a direct
extension of the angle used in the two-dimensional case. Finally, we define an intrinsic
spherical representation as an extension of the circular representation of contours in Sec-
tion 3.5. At the end of this section, we will have defined a representation that is invariant
by translation and scale and is unique for a given object and a given resolution up to a
rotation of the representation space. Detailed presentations of the basic results on semi-
regular tessellations, triangulations, and duality can be found in [19]1{27][28].

3.1 Triangulation and’Duality

The most natural discrete representation of a surface is a triangulation, that is a polyhe-
dron with triangular faces whose vertices are on the surface. Each face defines a plane
which is the local approximation of the surface. It is desirable for many algorithms to have
a constant number of neighbors at each node. We use a class of meshes such that each
node has exactly three neighbors. Such meshes can always be constructed as the dual of a
triangulation. The dual of a triangulation is a graph with one node for each face of a trian-
gulation. Nodes are connected in the dual graph if they correspond to connected faces in
the original triangulation. Figure 6 shows a triangulation and its dual. In switching from a
triangulation to its dual, the property of planarity of the faces is lost since faces, defined as
the cycles with the minimum number of vertices, may have more than three vertices.
Therefore, the dual mesh should be viewed as a graph of points with the desired connec-
tivity; the triangulation may be viewed as a polyhedral approximation of the object. The
dual of any triangulation is a graph of degree three. In the remainder of this paper, we will
use only dual meshes with the understanding that they can be derived from an initial trian-
gulation.

Figure 6 Triangulation and Dual Mesh

3.2 Global Regularity and Mesh Topology

As mentioned in the previous section, global regularity can be easily achieved in two
dimensions since a curve can be always divided into an arbitrary number of segments of
equal length. The equivalent in three dimensions would be a mesh covering a closed sur-
face such that the distance between vertices is constant and is the dual of a triangulation,

11

that is, each node has exactly three neighbors. Extending the notion of global regularity to
a mesh covering a two dimensional plane, there are three possible topologies: The triangu-
lar and hexagonal meshes which are dual of each other, and the square mesh which is its
own dual. The problem is that, even though these meshes provide global regularity for an
open surface, they cannot be extended to a close surface. In fact, tetrahedron, cube and
dodecahedron (Figure 7).are the only regular triangulation-dual tessellations of a closed
surface, corresponding to the triangular, square, and hexagonal topologies, respectively.
Therefore, only approximate global regularity can be achieved in three dimensions.

The approach that we use is recursive subdivision of the dodecahedron which yields a
mesh that is “almost” regular in that all but 12 pentagonal cells have hexagonal connectiv-
ity. If the number of cells is large enough, typically several hundred to a few thousand, the
ratio of the number of regular hexagonal cells to the number of singular pentagonal cells
becomes very small. Therefore, the mesh is almost regular for a large number of cells. In
practice, a triangulation with the appropriate number of nodes is first constructed. The tn-
angulation is built by subdividing each triangular face of a 20-face 1cosahedron into N2
smaller triangles. The final mesh is built by taking the dual of the 20N2 faces triangulation,
yielding a mesh with the same number of nodes. Figure 8 shows the mesh obtained by
recursive subdivision of the dodecahedron for N = 2, 3, and 5. For the experiments pre-
sented in this paper, we used a subdivision frequency of N = 7 for a total number of nodes
of 980.

Figure 7 Regular Meshes

@N=2 (c)N=5§

Figure 8 Meshes from Recursive Subdivision of Dodecahedron

12.

3.3 Local Regularity

The next step in going from two to three dimensions is to define a notion of local regular-
ity that leads to invariance properties of the mesh and curvature indicator definition simi-
lar to the properties used for 2-D curves. The definition of local regularity in three
dimensions is a straightforward extension of the definition of Section 2. Let P be a node of
the mesh, P;, P,, P; be its three neighbors, G be the centroid of the three points, and Q be
the projection of P on the plane defined by P;, P,, and P3 (Figure 9). The local regularity
condition simply states that Q coincides with G. This is the same condition as in two
dimensions, replacing the triangle (P;, P;, P) of Figure 3 by the tetrahedron (P;, P,, P3,
P). The local regularity condition is invariant by rotation, translation, and scaling because
it is purely local and involves only relative positions of the nodes with respect to each
other, not absolute distances.

P,

Q projection of P
on (Py,P;,Py

G center of (Pl,Pz,P3)

Figure 9 Local Regularity in Three Dimensions

3.4 Discrete Curvature Measure: Simplex Angle .

The last step in building a discrete surface representation is to define an indicator of cur-
vature that can be computed from a mesh with the appropriate regularity properties.We
propose a definition in terms of angular variation between neighbors in the mesh accord-
~ ing to the definition of Figure 2. We need to define some notations (Figure 10 (a)). Let P
be a_node of the mesh, P;, P, P; its three neighbors, O the center of the sphere circum-
scribed to the tetrahedron (P, P;, P5, P3), Z the line passing through O and through the
center of the circle circumscribed to (P;,P5,P3). Now, let us consider the cross section of
the surface by the plane Il containing Z and P. The intersection of I with the tetrahedron
is a triangle. One vertex of the triangle is P, and the base opposite to P is in the plane
(P1.P,,P3) (Figure 10 (b)). We define the angle @, as the angle between the two edges of
the triangle intersecting at P. By definition, @, is the discrete curvature measure at node P.
It is easy to see that this definition is consistent with the 2-D definition since the geometry
in the plane I1 is the same as the initial geometry for a two dimensional curve illustrated in
Figure 2. We call ¢, the simplex angle at P, since it is the extension to a three-dimensional
simplex, the tetrahedron, of the notion introduced for a two-dimensional simplex, the tri-
angle.

13

(a) (b)

Figure 10 Definition of the Simplex Angle

The simplex angle varies between -xt and ®. The angle is 0 for a flat surface, and is large
in absolute value if P is far from the plane of its three neighbors. The simplex angle is neg-
ative if the surface is locally concave, positive if it is convex, assuming that the set of
neighbors is oriented such that the normal to the plane they form is pointing toward the
outside of the object (Figure 11). This behavior of the simplex angle corresponds to the
intuitive notion of local “curvature” of a surface. Another desirable property is that the
simplex angle is sphere-invariant in that ¢, remains the same no matter where P is located
on the circumscribed sphere. In particular, this implies that if the nodes of the mesh are on
a surface whose curvature is constant in a region, then the simplex angle will also be con-
stant in this region no matter what the distribution of the points is. Finally, it is clear that
the simplex angle is invariant by rotation, translation, and scaling.

(a) Flat plane: ¢, =0 (b) Convex peak: @, close to (c) Concave peak: ¢, close to -n

Figure 11 Typical Values of the Simplex Angle

14

There are two practical problems with this definition of the simplex angle. First, this def-
inition requires the computation of a circumscribed circle and of a circumscribed sphere,
both of which are expensive operations. This computation becomes a problem in the algo-
rithm of Section 4 in which the angle has to be evaluated many times at every node of a
1000-node mesh. Second, the radius of the circumscribed sphere becomes infinite as @,
vanishes. As a result, a direct implementation using the radius of the circumscribed sphere
is expected to be numerically unstable in areas in which the mesh is nearly flat.

In contrast, we use a different approach that leads to an efficient and stable way to com-
pute ¢,. The details of the algorithm are given in Appendix A.

In the rest of the paper, we will denote by g the function that maps a node to its simplex
angle; the simplex angle ¢, at a node P will be denoted by g(P).

3.5 Simplex Angle Image

We have extended the notions of regularity and simplex angle to three-dimensional sur-
faces; we can now extend the circular representation developed in two dimensions to a
spherical representation in three dimensions. Let M be mesh of points on a surface such
that it has the topology of the quasi-regular mesh of Section 3.2. Let S be a reference mesh
with the same number of nodes on the sphere of unit one. We can establish a one-to-one
mapping i between the nodes of M and the nodes of S. The mapping & depends only on the
topolog¥ of the mesh and the number of nodes. Specifically, for a given size of the mesh M
= 20xN“, where N is the frequency of the mesh (Section 3.2), we can define a canonical
numbering of the nodes that represents the topology of any M-mesh. In other words, if two
nodes from two different M-mesh have the same index, so do their neighbors. With this
indexing system, h(P), where P is a node of the spherical mesh, is the node of the object
mesh that has correspond to the same index as P.

In the current implementation, the nodes are stored in a two-dimensional array. The first
dimension of the array, sometimes called the major index, is between 1 and 20, the second
dimension, sometimes called the minor index, is between 1 and N2. For any node P(ma-
Jjor,minor), h(P) is the point stored at the same location, (major,minor), in the object mesh
table. The connectivity table is computed only once for any given frequency.

Given h, we can store at each node P of S the simplex angle of the corresponding node on
the surface g(h(P)). The resulting structure is a quasi-regular mesh on the unit sphere, each
node being associated with a value corresponding to the simplex angle of a point on the
original surface. By analogy with the Extended Gaussian Image, we call this representa-
tion the Simplex Angle Image (SAI). In the remainder of the paper, we will denote by g(P)
instead of g(h(P)) the simplex angle associated with the object mesh node A(P) since there
is no ambiguity.

If the original mesh 4 satisfies the condition of local regularity, then the corresponding
SAI has several important properties. First, the SAI is invariant by translation and scaling
of the original object, given a mesh £ This condition is because the simplex angle itself is
invariant by translation and scaling (Section 3.5), and because M still satisfies the local
regularity condition after translation and scaling (Section 3.3).

15

The fundamental property of the SAI is that it represents an object unambiguously up to
a rotation. More precisely, if A and M’ are two meshes on the same object with the same
number of nodes both satisfying the local regularity condition, then the corresponding
SAIs S and 5’are identical up to a rotation of the unit sphere. Strictly speaking, this is true
only as the number of nodes becomes very large because the nodes of one sphere do not
necessarily coincide with the nodes of the rotation version of the other sphere. (This prob-
lem is addressed in Section 5.1.) One consequence of this property is that two SAISs repre-
sent the same object if one is the rotated version of the other.

From this definition of the mapping h, we can now easily see the origin the property of
connectivity conservation mentioned in the Introduction. If two nodes P; and P, are con-
nected on the spherical mesh, then the two corresponding nodes M ;=h(P;) and M,=h(P5)
on the object mesh are also connected by an arc of the object mesh. The property holds
because of the definition of £ which depends only on the topology of the mesh, not on the
positions of the nodes.

Another way to look at these properties of SAls is in terms of unicity of representation.
A given SAI defines a mesh size and a distribution of simplex angles. The unicity property
is that an SAI represents a unique object mesh up to rotation, translation, and scale. The
unicity property holds even in the case of arbitrary non-convex objects because of the con-
nectivity conservation property. In fact, we will show in Section 4.4 that the object can be
explicitly reconstructed from its SAL

3.6 Alternate Definition of Simplex Angle

Other definitions of the simplex angle are possible. In particular, a common definition of
a discrete curvature index is the angle defined as [1):

K = 2%-(9,+0,+96,)

In this definition, the O;s are the angles between the vectors joining the center point at
which x is calculated and its three neighbors (Figure 12). To be consistent with @, the sign
of x is positive for a convex configuration in which the center point is in the positive side
of the plane defined by its three neighbors, and negative for a concave configuration.

<Y

8, |
Figure 12 Definition of Alternate Curvature Angle K

The behaviors of k and @ as local shape varies are qualitatively the same. As an example,
let us consider the configuration of Figure 13 in which three points form a right triangle
with the lengths of two of the sides being equal to one, and in which a point is free to
move on a line orthogonal to the plane of the three points. We denote by D the signed dis-
tance between the point and the plane. Figure 14 shows the change in x and @ as D varies.
In this figure, ¢ is scaled to be between -2% and +2x to be consistent with x. As expected,
the shapes of the two curves are similar: both angles are close to zero as D vanishes, which

16

corresponds to a locally flat surface; and they increase monotonically as D increases,
which corresponds to increasing local curvatures of the surface. The graphs show that x
and @ are essentially the same for large values of D. The main difference between the two
occurs near the origin. To illustrate this difference, Figure 15 shows the graphs in the
neighborhood of the origin. The difference is now apparent: x has a zero tangent at the ori-
gin, while the @ graph exhibits a large slope at the origin. In practice, this means that x
cannot discriminate well between local configurations that correspond to relatively small
values of D since x varies very slowly. By contrast, because of the slope, different local
configurations yield very different values of ¢, even near the origin. In practice, most
shapes have local configurations located toward the center part of the graph where the dif-
ference between the two angles is most pronounced. High values of x and @, where the
two angles are essentially the same, occur mostly at isolated points of the surface. This is
the main reason for selecting ¢ over x to build our representation because we are inter-
ested in using the curvature index that best discriminates among shapes. From a computa-
tional standpoint, both angles require essentially the same amount of computation even
though the geometric definition of x is simpler.

8
k

Figure 13 Reference Configuration for the Graphs of Figure 14 and Figure 15

angle (radians)
< |
200 = N,
PPy < il <
by A7
//

1= 77
100 { /
19 /
100
ao Y
000

7
u 4
: /i
= 77
200 /]
a® /]
ot 77
a® (/
P 4 4
- s e
400 b =
o D

200 -100 -L00 00 100 200 ano

Figure 14 Values of @ and X as Functions of Distance to Reference Plane

17

angle (milliradians)

oo K /
o0 [

oo N / x
t 1 /
o [Y
o [

o | 7

00 e

o z

-]

oo / /

00 /[Ji

= 7 7

-uooo ' /[Dx 103

Figure 15 Values of ¢ and X as Functions of Distance to Reference Plane Near the Origin

4 Building Intrinsic Representations from 3-D Data

In the previous sections, we have defined the notion of locally regular mesh and its asso-
ciated SAL In this section, we describe the algorithm developed for computing such a
mesh from an input object. We assume that we have some input description of an object.
The only requirement is that the input description allows for computing the distance
between an arbitrary point in space and the surface of the object. Therefore, input object
representations such as polynomial surface patches and polyhedra from CAD models, or
arbitrary triangulations of the surface are acceptable. Even unstructured sets of points
from raw range data can be used provided that the density of points is high enough that the
distance to the surface can be estimated reasonably accurately.

The general approach is to first define an initial mesh near the object with the topology of
Section 3.2 and to slowly deform it by moving its nodes until the mesh satisfies two condi-
tions: It must be close to the input object, and it must satisfy the local regularity condition.
The first condition ensures that the resulting mesh is a good approximation of the object,
while the second condition ensures that a valid SAI can be derived from the mesh. Section
4.1 describes the basic algorithm for deforming the mesh; Section 4.2 describes the con-
struction of the mesh used to initiate the deformation algorithm. Section 4.3 describes the
algorithm for converting the final mesh to a spherical representation and gives examples
of building meshes and SAIs from range data and from CAD models. Finally, Section 4.4
shows how the same algorithm can be used to perform the inverse operation, that is,
reconstructing an object from a given SAL

18

4.1 Mesh Deformation

The problem is now to deform the mesh such that all the nodes satisfy two fundamental
properties:
» Mesh nodes must be as close as possible to the original surface.

e Mesh nodes must satisfy the normal constraints: a node is on the line parallel to the nor-
mal vector of the plane formed by its three neighbors and passing by the center of the
neighbors.

These two conditions ensure that the mesh is a good approximation of the surface while
guaranteeing that it is an intrinsic representation. The formalism of deformable surfaces
[8] is applied to deform the mesh until it satisfies these criteria. Specifically, each node is
subject to two types of forces. The first type of forces brings a node closer to the input sur-
face, while the second type forces the node to satisfy the normal constraint. Let F,, be the
force of the first type applied at a given node N, and F; be the force of the second type at
the same node. Node P is iteratively moved according to those forces. If P, ;, P;, and P, ;
are the positions of node P at three consecutive iterations, the update rule is defined as:

P,.=P+F,+F,+D(P-P,_,) (1)

t+1

This expression is simply the discrete version of the fundamental equation describing a
mechanical system subject to two forces and to a damping coefficient D. D must be
between 0 and ! to ensure convergence. As long as it is within these bounds, D affects
only the rate of convergence. A typical value is D = 0. Theoretically, the combination of
forces brings the mesh to a state such that F,~0 and F,=0 . In practice, the iterative
update of the mesh is halted when the relative displacements of the nodes from one itera-
tion to the next are small.

F, is defined by calculating the point P, from the original surface that is closest to the
node, that is:

F, = kPP, @

Where £ is the spring constant of the force which must be between 0 and 1. The effect of
the force is negligible if the node is already very close to the surface. Conversely, the force
pulls nodes that are far from the surface, the strength of the force increasing with distance.
When the points are far away, it is desirable to limit the strength of the force to avoid
unstable situations in which a node would move toward the surface too quickly and over-
shoot the optimal position by a large distance. In practice, k varies between 0.01 at the
beginning of the iterations to 0.4 at the end of the iterations, that is, when the nodes of the
mesh have reached a stable position.

The curvature force F is calculated by computing the point P, that is on the line normal
to the triangle formed by the three neighbors of P and containing G (Figure 9), and such
that the mesh curvature at P and Pg are the same: g(P.) = g(P). Those two conditions
ensure that P, satisfies the local regularity condition whﬁc keeping the original mesh cur-
vature. F is defined as a spring force proportional to the distance between P and P:

19

F . = aPPg ?)

To avoid unstable behavior of the system, the spring constant a should be between 0 and
1/2. In practice, a=1/2.

4.2 Initialization

For the iterative mesh update to converge, the mesh must be initialized to some shape
that is close to the initial shape. We use two different approaches depending on whether
the input data is a set of data measured on the object by a sensor, or a synthetic CAD
model.

In the case of sensor data, we use the techniques presented in [8] using deformable sur-
faces to build a triangulated mesh that approximates the object. The deformable surface
algorithm fits a discrete surface to the input data, interpolating over the unknown regions,
retaining salient features of the surface, if any, and smoothing the input data. When the
representation is to be computed from sensor data, this technique is particularly effective
because the deformable surface algorithm tends to filter out noise in the data. This algo-
rithm is also effective in performing segmentation by separating an object from its sur-
roundings in a complex scene. Once a triangulation is obtained, the mesh is initialized by
tessellating the ellipsoid of inertia of the input shape. The ellipsoid of inertia is easily com-
puted from the input surface, while the tessellation is computed by deforming a sphere tes-
sellated using the topology defined in Section 3.2. Although the ellipsoid is only a crude
approximation of the object, it is close enough for the mesh deformation process to con-
verge. The distance between a node and the triangulated surface is computed by finding
the closest vertex of the triangulation and by computing the minimurmn distance from the
mesh node to the set of triangles around the vertex.

In the case of a synthetic CAD model as input, for example a polyhedron, the ellipsoid of
inertia is computed directly from the synthetic model. A regular mesh is mapped on the
ellipsoid in the same manner as in the previous case. In this case, the intermediate repre-
sentation using the deformable surface algorithm is not necessary since there is no noise to
filter out. In fact, using an intermediate model would degrade the model by smoothing out
corners and eliminating high curvature features.

Once the initial ellipsoid is generated, the mesh generation is completely independent of
the actual format of the input data. In particular, the mesh generation algorithm can handle
a variety of representations as input, including triangulations, curved or polyhedral CAD
models, and sets of data points from range images. The only operation that is data-depen-
dent is the computation of the object point closest to a given node.

4.3 From Mesh to SAI

Once a regular mesh is created from the input data, a reference mesh with the same num-
ber of nodes is created on the unit sphere. The value of the angle at each node of the mesh
is stored in the corresponding node of the sphere.

20

The sequence of operations from input surface description to SAI is summarized in Fig-
ure 16. The SAI building algorithm is illustrated in Figure 17 with range data as input and
in Figure 18 with a polyhedral model as input. Figure 17 (a) shows three views of a green
pepper from which three 240x256 range images were taken using the OGIS range finder.
The images are merged and an initial description of the object is produced using the
deformable surface algorithm. Figure 17 (b) and Figure 17 (c) show the initial mesh
mapped on the ellipsoid and the mesh at an intermediate stage. Figure 17 (d) shows the
final regular mesh on the object. Figure 17 (e) shows the corresponding SAIL The meshes
are displayed as depth-cued wireframes.The SAI is displayed by placing each node of the
sphere at a distance from the origin that is proportional to the angle stored at that node.
Figure 18 (a) to Figure 18 (d) show the same sequence in the case of an object initially
described as a polyhedron as generated by the VANTAGE CAD system. However, the ini-
tial surface is computed using the faces of the CAD model rather than a set of data points
as in Figure 17. Once this intermediate representation is generated, the mesh deformation
and SAI generation algorithms proceed in the same manner. The arrow between Figure 18
(c) and Figure 18 (d) shows the correspondence between object mesh and its SAI. The ver-
tical crease in the middle of the SAI corresponds to the concave region between the two
cylinders. The top and bottom regions of the SAI exhibit large values of the angle corre-
sponding to the transition between the cylindrical and planar faces at both extremities of
the object. In this example, the SAI exhibits some noise in regions that are near the edges
between faces of the object. In practice, the SAI is smoothed before being used for recog-
nition.

triangulation

discrete surface fitting
using deformable surface
algorithm

iterative deformation final mesh
of mesh:

mapping (')f mesh

on sphere*
g

input object
(discrete surface, P, =P+F,+F,+D(P-P,_))
CAD model, data

m‘%

ellipsoid of inertia

>ﬁ\a\ mesh

mapped on ellipsoid

Figure 16 Summary of Building SAI from Input Object Description

21

(d) Final Mesh

Figure 17 Building SAI from Range Data

22

i
t
i

(a) Input Object Description

(d) Final Mesh

Figure 18 Building the SAI from a Polyhedral Model

4.4 Reconstructing Shape from SAI

A fundamental property of the SAI representation is that the original shape can be recon-
structed from its SAI up to a rigid transformation and a scale factor. In fact, the same algo-
rithm that is used for building the mesh from an input surface can be used to perform the
inverse operation. Starting with the standard regular mesh on the sphere, iteratively apply
the deformation given by (1) until the mesh settles in a stable configuration. There are two
differences between the inverse and the direct algorithm. First, the point P, of (3) is
defined as the point on the line normal to the triangle formed by the neighbors that has the
same angle as the angle stored in the SAI, whereas in the direct algorithm it is defined as
the point that has the same angle as the mesh. Second, F,, = 0 since there is no reference
surface to attract the node.

5 Matching Objects

We now address the matching problem: Given two SAls, determine whether they corre-
spond to the same object. If so, find the rigid transformation between the two instances of
the object. As discussed in Section 3, the representations of a single object with respect to
two different reference frames are related by a rotation of the underlying sphere. There-
fore, the most straightforward approach is to compute a distance measure between the
SAIs for every possible rotation. Once the rotation yielding minimum distance is deter-
mined, the full 3-D transformations can be determined. Because it requires the testing of
the entire 2-D space of rotations, it is expensive. We discuss strategies to reduce the search
space in Section 5.3. Before that, in Sections 5.1 and 5.2, we discuss the distance measure
and the computation of the final rigid transformation, respectively.

5.1 Finding the Best Rotation

Let S and S’ be the spherical representations of two objects. Denoting by g(P), resp.
8’ (P), the value of the simplex angle at a node P of S, resp. P of 5, S and $’ are representa-,
tions of the same object if there exists a rotation R such that:

g'(P) = g(RP) @

For every point P of §’. Since the SAl is discrete, g(RP) is not defined because in general
RP will fall between nodes of §’. We define a discrete approximation of g(RP), G(RP), as
follows: Let P;, P,, P3, and P4 be the four nodes of 5’ nearest to RP. G(RP) is the
weighted sum of the values g(P;). Formally:

4
G(RP) = 3 W(|RP-P;|)g(P)) s)
1

24

Where W(d) is a weighting function that is / if d = 0 and 0 if d is greater than the average
distance between nodes. This definition of G amounts to computing an interpolated value
of g using the four nearest nodes.

The problem now is to find this rotation using the discrete representation of S and S'.
This is done by defining a distance D(5, S, R) between SAIs as the sum of squared differ-
ences between the simplex angles at the nodes of one of the sphere and at the nodes of the
rotated sphere. Formally, the distance is defined as:

D(S. S, R) = Y (g'(P)-GRP))* ®)
S

The minimum of D corresponds to the best rotation that brings S and $’ in correspon-
dence. The simplest strategy is to sample the space of all possible rotations, represented by
their angles (9,6,y), and to evaluate D for each sample value (¢;,6;y;). The convention
used for the rotation angles is shown in Figure 19: 0 is the rotation about the X axis, @ is
the rotation about the Z axis, and vy is the rotation about the new Z axis. This approach is
obviously expensive; Section 5.3 presents better strategies.

It is important to note that the rotation is not the rotation setween the original objects; it
is the rotation of the representations. An additional step is necded to compute the actual
transformation between objects as described below.

yA

Figure 19 Rotation Angles

5.2 Computing the Full Transformation

The last step in matching objects is to derive the transformation between the actual
objects, given the rotation between their SAIs. The rotational part of the transformation is
denoted by R, the translational part by T,. Given a SAI rotation R, for each node P’ of §’
we compute the node P of S that is nearest to RP’. Let M, resp. M”, be the point on the

25

object corresponding to the node P of S, resp. P’. A first estimate of the transformation is
computed by minimizing the sum of the distances between the points M of the first object
and the corresponding points R,M’+T, of the second object. Formally, the expression to
minimize is:

E R, T) = Y |RM +T,-M|’)

The sum in this expression is taken over the set of all the nodes of the mesh. The trans-
formation derived by minimizing (7) is only an approximation because it assumes that the
nodes from the two meshes correspond exactly. Due to the discretization, the assumption
is not true in general. Furthermore, the fact that P’ is the node nearest to P in the SAI does
not necessarily mean that M’ is the node nearest to M on the object. Therefore, the initial
estimate needs to be refined to take into account this discretization effect. A more accurate
criterion would be to require that each transformed node R,M’+T,, be as close as possible
to the plane defined by the point M and the estimated normal vector N at M. This defini-
tion is more liberal in that it does not require R,M’+T, and M to correspond exactly.
Instead, the definition requires R,M’+T, to be near the tangent plane at M. Denoting by
(R;, T)) the new estimate of the transformation, this definition amounts to finding the min-
imum of the function:

E\R,,T) = Y (N- (RM' +T,-M))* @®)

An iterative technique is used to find the minimum of E; using (R,,T,) as a starting
point.

5.3 Reducing the Search Space

As mentioned in Section 5.1, the brute force approach to finding the best mesh rotation is
too expensive to be practical. However, several strategies can be used to make it more effi-
cient. The first strategy is to use a coarse-to-fine approach to locating the minimum of the
function D of (6). In this approach, the space of possible rotations, defined by three angles
of rotation about the three axis, (¢,0,y), is searched using large angular steps (A, A6,
Avy). After this initial coarse search, a small number of locations are identified around
which the minimum may occur. The space of rotations is again searched around each
potential minimum found at the coarse level using smaller angular steps (3¢, 86, dy). Typ-
ical values are A@g= AB8= Ay= 10°, corresponding to a 36x18x36 search space at the coarse
level. The rotation space is then searched in an 18° wide interval around each potential
minimum found at the coarse level. More levels of search may be more efficient although
we have not yet tried to determine the best combination of coarse-to-fine levels.

The second approach is to use a-priori knowledge about the relative poses of the objects
to reduce the search space. For example, the rotation defined by the axis of inertia of the
SAIs can be used as a starting point for the search. In general, a coarse-to-fine approach
should be used in a relatively large region centered at the rotation calculated from the axis
of inertia. The use of a large region is necessary because parts of the objects may be
occluded, leading to variations in the axis of inertia, and because the rotation computed

26

from the axis of inertia is a crude approximation of the true rotation. In practice, using the
axis of inertia is very effective in pruning the search space as long as the visible part of the
object is large enough.

Finally, features on the spherical representation itself can be used to further narrow the
search. Specifically, local maxima of g on both spherical representations can be matched
to compute an initial rotation to narrow the search space. This initial rotation would be
more accurate than the one from the axis of inertia. However, it would be computable only
if the spherical representations exhibit well-defined local maxima. Although we did not
implement this strategy, it seems to be more appropriate to the case in which a smaller por-
tion of the object is actually visible.

5.4 Example

Figure 20 shows three views of the same object as in Figure 17 placed in a different ori-
entation. A model is built from the three corresponding range images using the approach
described in 4.3. Figure 21 illustrates the difference of pose between the two models com-
puted from the two sets of images. Figure 21 (a) (resp. Figure 21 (b)) shows the superim-
position of the cross sections of the two models in the plane YZ (resp. XY). Figure 22
shows the value of the SAI distance measure. The distance measure is displayed as a func-
tion of ¢ and 0 only since the distance is a function of three angle that cannot be displayed
easily. The displayed value at (¢,0) is the minimum value found for all the possible values
of . The resolution of the graph is 10° in both @ and 6, and the angles are defined using
the convention of Figure 19. This display shows that there is a single sharp minimum cor-
responding to the rotation that brings the SAI in correspondence. Figure 23 (a) and (b)
show the superimposition of the cross-sections of both models after the second was trans-
formed using the transformation computed from the SAI correspondence using the algo-
rithms of Section 5.2. Figure 24 shows one of the models backprojected in the image of
the other using the computed transformation. Figure 24 (a) is the original image; Figure 24
(b) is the backprojected model. These displays show that the transformation is correctly
computed in that the average distance between the two models after transformation is on
the order of the accuracy of the range sensor. This example demonstrates the use of SAI
matching in the case of complete models. In the next section, we address the problem of
dealing with partial views.

27

Figure 20 Three Views of the Object of Figure 17 in a Different Orientation

s e,
S,
o . p——~e.
., N, e
:/ et \ // . . N,
T, ~ 4 2 K
3 o
7 L - H ¥ *
“ 1] ,/ { : H
i }: g f 3 :
1§ it i : 3
7 H H i H
> Ji ¢ 3 H
»Td ;
’ ¢ ? i
- !
\é Nia, s - § N]\ i 5
N\ e T ” x “ P H
el AY
N N s
AN
4 - o

x\“—”\“w”"ua—-""'/ ’
(a) Cross-Section in X (b) Cross-Section in Z
Figure 21 Relative Positions of the Models Before Matching

Figure 22 Graph of Distance Between SAIs as a Function of) and 0

28

s
A, i
. PPras
e nann anas ARAAR A

(a) Cross-Section in X (b) Cross-Section in Z

Figure 23 Relative Positions of the Models after Matching

(a) Image of First Model (b) Second Model Displayed Using Computed Pose

Figure 24 Display of the Model in the Computed Pose

6 Partial Views and Occlusion

Up to now we have assumed that we have a complete model of the object, as in Figure
18, or that we have data covering the entire surface of the object, as in Figure 17. This
assumption is appropriate for building reference models of objects. During the recognition
phase, however, only a portion of the object is visible in the scene. The matching algo-
rithm of Section 5 must be modified to allow for partial representations. The algorithm
used for extracting the initial surface model is able to distinguish between regions of the
mesh that are close to input surfaces or to data points, and parts that are interpolated
between input data. The first type of region is the visible part of the mesh, and the second
type is the occluded part of the mesh. Therefore, even though the representation is always
a mesh mapped on a closed surface, it is always possible to determine which nodes of the
mesh represent valid data.

29

The situation is illustrated in Figure 25 in the case of a two dimensional contour. In Fig-
ure 25 (a) a contour is approximated by a mesh of eight points. The mesh is assumed to be
regular, that is all the points of the mesh are equidistant. Let L = 8! be the total length of
the mesh. Figure 25 (b) shows the same contour with one portion hidden. The occluded
portion is shown as a shaded curve. The visible section is approximated by a regular mesh
of eight nodes of length L; = 81;. Since the occluded part is interpolated as a straight line,
the length of this mesh is smaller than the total length of the mesh on the original object: L
> L;. Conversely, the length of the part of the representation corresponding to the visible
part, L, shown in Figure 25 (d), is greater than the length of the same section of the curve
on the original representation, L* shown in Figure 25 (c). In order to compute the distance
measure of Section 5, the SAI of the observed curve must be scaled so that it occupies the
same length on the unique circle as in the reference representation of the object. If L* were
known, the scale factor would be:

k)]

L
2

In reality, L* is not known because we do not yet know which part of the reference curve
corresponds to the visible part of the observed curve. To eliminate L*, we use the relation:

L, L‘

L 2x a0

This relation simply expresses the fact that the ratios of visible and total length in object
and representation spaces are the same, which is always true when the mesh is regular.
Since the left-hand side involves only known quantities, total length of model and
observed visible length, L* can be eliminated by combining (9) and (10):

2x L1
= — — 11
k LT a1
The situation is the same in three dimension except that lengths are replaced by areas A,
Aj, Az, A*, with obvious notations. Relation (11) becomes:

k= —— (12)
A, A
The direct extension from two to three dimension is only an approximation because the
equivalent of relation (10), A;/A = A/4r, holds only if the area per node is constant over
the entire mesh. In practice, however, the area per node is nearly constant for a mesh that
satisfies the local regularity condition.

Once k is computed, the appropriate scaling needs to be applied to the SAI. The scaling
algorithm is illustrated in Figure 26: if C is the center of the visible region on the represen-
tation sphere, a node P such that @ is the angle (OP, OC) is moved to the point P’ on the
great circle that contains P and C such that: '

1-cos®' = k(1-cosB) (13)

30

where 0’ is the angle (OP’, OC) and & is the scale factor. This mapping is chosen because
it guarantees that the area of the visible region is scaled exactly by & if the region is circu-
lar. Even if the region is not circular, the mapping is a reasonable approximation.

total length: L visible length:

N

occluded section

-

i (a) Complete Object (b) Partial View of the Object of (a)

L.

(c) SAI of Complete Object (d) SAI of Partial View

Figure 25 Matching Partial Representation in Two Dimensions

Figure 26 SAI Scaling Algorithm
The key in this algorithm is the connectivity conservation property of the SAI mentioned

previously. Specifically, if a connected patch of the surface is visible, then its correspond-
ing image on the SAI is also a connected patch on the sphere. This property allows us to

3r

bring the two connected patches into correspondence using a simple scaling. Establishing
the correspondence is not possible in the case of the EGI representation, in which the
spherical representations of an object and of a patch on the object may be completely dif-
ferent. If the object is represented by an implicit equation, e.g., algebraic function or
superquadrics, then the coefficients of the equation computed from the entire object sur-
face may be completely different from the ones computed from only a patch on the object
surface.

We now show two examples of recognition in the presence of occlusion. In the first
example, a range image of an isolated object is taken. Then a complete model of the object
is matched with the SAI representation from range data. Figure 27 shows the intensity
image of the object. Only about 30% of the object is visible in the image. The remaining
70% of the representation built from the image is interpolated and is ignored in the estima-
tion of the SAI distance. Figure 28 (a) shows the set of three registered views used to build
the reference model, and Figure 28 (b) shows the SAI of the reference model used for
matching. Figure 29 shows the superimposition of scene points and reference model after
transformation. Figure 30 displays the graph of the distance between SAIs as function of
rotation angles. Figure 30 (a) shows two views of the distance as a function of @ and 6.
Figure 30 (b) shows the same function displayed in @-y space. These displays demon-
strate that there is a well-defined minimum at the optimal rotation of the SAIs. Figure 31
shows the model backprojected in the observed image using the computed transformation.
In this example, the reference model was computed by taking three registered range
images of the object as in the example of Figure 17.

In the second example, the reference model is the CAD model of Figure 18. The
observed scene is shown in Figure 32. The result of the matching is shown in Figure 33
and Figure 34. Only part of the object is visible in the image because about of self occlu-
sion and because of occlusion from other objects in the scene.

In both examples, the deformable surface algorithm is used to separate the object from
the rest of the scene and to build an initial surface model. If there is no data point in its
vicinity, the visible portion of the object mesh and the corresponding SAI are identified by
marking a node of the mesh as interpolated. Using the algorithms presented in this section,
the SAI of the observed object was scaled based on the size of the visible area. As an
example, Figure 35 (a) shows the SAI computed from the image of Figure 27, Figure 35
(b) shows the SAI after the scaling in applied to compensate for occlusions. The density of
points increases in the region that corresponds to the visible part of the object (indicated
by the solid arrow). Conversely the density of points decreases in the region correspond-
ing to the occluded part of the object (indicated by the shaded arrow). These examples
show that the SAI matching algorithm can deal with occlusions and partial views, even
when only a relatively small percentage of the surface is visible.

32

Figure 27 Input Image

(b) SAI of ileference Model

) Used to Build the Model

Figure 28 Reference Model

from Figure 28

Figure 29 Cross Sections of Registered M

odel and Scene Using the Image of i igure 27 and the Model

i3

(@) D as Function of ¢ and 6

(b) Distance as Function of @ and

Figure 30 Sum of Squared Differences of SAIs as Function of Rotation Angles

() Input Image ' (b) Model after Transformation

Figure 31 Display of Model Using the Pose Computed from the Matching
34

Figure 32 Input Image

-~ .
s
/ JTSUPSE TP
H !
% | :
% § i
. $:
e ! R
7 ! ’
N .
4 AR A O
4
z
\""-\M.s::'.:::r/

Figure 33 Cross Sections of Registered Model ra;'..d Sc:o:nle8 Using the Image of Figure 32 and the Model
of Figure

35

(a) Input Image

(b) Model after Transformation

Figure 34 Display of Model Using the Pose Computed from the Matching

(b) SAI after Scaling

Figure 35 Effect of Occlusion-Compensating Scaling on SAI of Observed Object

7 Conclusion

In this paper, we introduced a new approach for building and recognizing models of
curved objects. The basic representation is a mesh of nodes on the surface that satisfies
certain regularity constraints. We introduced the notion of simplex angle as a curvature
indicator stored at each node of the mesh. We showed how a mesh can be mapped into a

36

spherical representation in canonical manner, and how objects can be recognized by com-
puting the distance between spherical representations.

The SAI representation has many desirable properties that make it very effective as a
tool for 3-D object recognition:

» The SAI is invariant with respect to translation, rotation, and scaling of the object. This
is not true of most other commonly used representations. This invariance allows the
recognition algorithm to compare shapes through the computation of distances between
SAls without requiring explicit matching between object features or explicit computa-
tion of object pose.

» The SAI preserves connectivity between parts of the object in that nodes that are neigh-
bors on the object mesh are also neighbors on the SAI Thus the SAI does not exhibit
the same ambiguity problem for non-convex objects as the EGI and CEGI representa-
tions.

+ The SAI representation can handle partial views and occluded objects. The basic
approach is to measure the area of the visible portion of an object observed in a scene,
and deform the SAI mesh model so that the percentage of the sphere corresponding to
the visible area is the same in both model and scene SAIs. This approach to recognition
of occluded objects is practical thanks to the property of connectivity conservation
described above. Specifically, a connected visible region of an object corresponds to a
connected region on the corresponding SAI.

Results show that the SAI representation is successfully used to determine the pose of an
object in a range image including occlusion and multiple objects. This approach is partic-
ularly well suited for applications dealing with natural objects. Typically, conventicaal
object modeling and recognition techniques would not work due to the variety and com-
plexity of shapes that may have to be handled. The approach is general enough that it can
also convert manually built models to the SAI representation.

Many issues remain to be addressed. First, we need to improve the search for the mini-
mum distance between SAIs during the recognition phase. This improvement can be
achieved by improving the coarse-to-fine approach to extrema localization, and by using
cues computed from the original data to restrict the area in which the extrema are
searched. Another interesting direction of research is the parallel implementation of the
algorithm which should be possible since computations at each node of the sphere and for
each possible rotation are independent of each other. A third issue is the extension of those
techniques to objects that are not topologically equivalent to the sphere, such as torus-
shaped objects or open-surfaced objects. This extension requires the definition of mesh
topology and global regularity for those classes of shapes. To apply the technology to
more complex scenes, additional range image processing needs to be developed to isolate
objects in the scene from one another. Currently, the algorithm introduced in {8] uses a
fixed window around the center of each potential object in the scene. A better initial seg-
mentation is needed to deal with complex scenes. Finally, an important issue is to deter-
mine the appropriate mesh resolution, as given by the number of nodes, that is needed for
a particular application. Currently, the empirical selection of the size of the mesh can lead
to two possible problems. If the size of the mesh is too small, important details of the
object may be undersampled. On the other hand, if the mesh is too large, computation time

37

for both model building and recognition becomes prohibitive. The density of nodes should
be computed based on the average and maximum curvatures of the surface.

8 References

(1] Aleksandrov, A.D., Zalgaller, V.A., “Intrinsic Geometry of Surfaces”, Translation of
Mathematical Monographs Series, AMS Publisher, 1967

[2] Besl, P.J., Kay, N.D., “A Method for Registration of 3-D Shapes”, IEEE Trans. Pattern
Analysis and Machine Intelligence, PAMI, Vol. 14, No. 2, p. 239, 1992

i3] Besl, P, Jain, R., “Segmentation Through Symbolic Surface Descriptions”, Proc. IEEE
Conf. on Computer Vision and Pattern Recognition , [EEE Computer Society, pp 77-85,
Miami, 1986

[4] Bobick, A.F, Bolles, R.C., “The Representation Space Paradigm of Concurrent Evolv-

ing Object Descriptions”, IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI,
Vol. 14, No. 2, p. 146, 1992

[5] Bolle, R M., B.C. Vemuri, “Three Dimensional Surface Reconstruction Methods”,
IEEE Trans. Pattern Analysis and Machine Intelligence , Vol. 13, pp. 1-14, 1991.

[6] Brady, M. and Ponce, J. and Yuille, A. and Asada, H., “Describing Surfaces”, Proc.
2nd International Symposium on Robotics, MIT Press, Cambridge, MA, 1985

[7] Brou, P., “Using the Gaussian Image to Find the Orientation of Object’ , The Interna-
tional Journal of Robotics Research , 3,4, 89-125, 1983

[8] Delingette, H., Hebert, M. and Ikeuchi, K. , “Shape Representation and Image Seg-
mentation Using Deformable Surfaces” , Image and Vision Computing, Vol. 10, No. 3, p.
132April 1992

[9] Faugeras, O.D. and Hebert, M. , “The Representation, Recognition, and Locating of 3-
D Objects” , The International of Robotics Research, 5,3, 27-52, 1986

[10] Ferrie, FP, Lagarde, J. and Whaite, P. , “Darboux Frames, Snakes, and Super-Quad-
rics: Geomertry from the Bottom-Up” , Proc. of the IEEE Workshop on Interpretation of
3D Scene , IEEE Computer Society , 1989 , 170-176

[11] Forsyth, D.A., Mundy, J.L., Zisserman, A., Coelho, C., Heller, A., Rothwell, C,,
“Invariant Descriptors for 3-D Object Recognition and Pose”, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 13, pp. 971-992, October 1992

[12] Grimson, W. E. L. and Lozano-Perez, T. , “Localizing Overlapping Parts by Search-
ing the Interpretation Tree” , IEEE Trans. Pattern Analysis and Machine Intelligence ,
PAMI-9, 4, 1987, July , 469-482

[13] Ikeuchi, K. , “Recognition of 3-D Objects Using the Extended Gaussian Image” ,
International Joint Conf. on Artificial Intelligence , 595-600 , 1981

38

[14] Ikeuchi, K. and Hong, K.S., “Determining Linear Shape Change: Toward Automatic
Generation of Object Recognition Program,” Computer Vision, Graphics, and Image Pro-
cessing: Image Understanding, Vol.53, No.2, pp.154-170, March 1991

[15] Kang, S.B. and lkeuchi, K.,“Determining 3-D Object Pose using the Complex
Extended Gaussian Image,” Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition: CVPR-91, Lahaina, Maui, Hawaii, pp.580-585, June 1991.

[16] Kass, M., Witkin, A., Terzopoulos, D., “Snakes: Active Contour Models”, Interna-
tional Journal of Computer Vision, Vol. 2, No. 1, pp. 321-331, 1988

[17] Lamdan, Y., Schwartz, J.T., Wolfson, H.J., “Affine Invariant Model-Based Object
Recognition”, IEEE Trans. Robotics and Automation, Vol. 6, No. 5, pp. 578-589, October
1990

[18] Little, J.J., “Determining Object Attitude from Extended Gaussian Images” , Proc. of
9th Intern. Joint Conf. on Artificial Intelligence , 960-963 , 1985

[19] Loeb, A.L., “Space Structures”, Addison-Wesly, 1976

[20] Lowe, D.G. , “Three-Dimensional Object Recognition from Single Two-Dimensional
Images” , Artificial Intelligence , 31, 1987 , 355-395

[21] Oshima, M. and Shirai, Y. , “Object Recognition Using Three-Dimensional Informa-
tion” , IEEE Trans. Pattern Analysis and Machine Intelligence , PAMI-5 , 4 , 353-361 ,
July , 1983

[22] Pentland, A. P., “Perceptual Organization and the Representanon of Natural Form”
, Artificial Intelligence , 28 , 2, 293-331, 1986

[23] Stein, F.,, Medioni, G., “Structural Indexing: Efficient 3-D Object Recognition”,
IEEE Trans. Pattern Analysis and Machine Intelligence , PAMI, Vol. 14, No. 2, p. 125,
1992

[24] Taubin, G., “Recognition and Positioning of Rigid Objects Using Algebraic and
Moment Invariants”, PhD Dissertation, Brown University, 1990

[25] Taubin, G., Cukierman, F,, Sullivan, S., Ponce, J., and Kriegman, D.J., “Parametriz-
ing and Fitting Bounded Algebraic Curves and Surfaces”, Proc. Computer Vision and Pat-
tern Recognition, June 1992,

[26] Terzopoulos, D., Witkin, A., Kass, M. , “Symmetry-Seeking Models and 3D Object
Recognition” , Intern. of Computer Vision, 1,1, 1987, 211-221

[27] Wenninger, M., “Polyhedron Models”’, Cambridge University Press, London, 1971
(28] Wenninger, M., “Dual Models”, Cambridge University Press, London, 1983

39

Appendix A: Simplex Angle Computation

Computing the simplex angle directly from the definition of Section 3.4 is inefficient and
numerically unstable. In this Appendix, we describe the method used in the implementa-
tion. We first present the algorithm and then give a proof that the algorithm is consistent
with the definition of Section 3.4. Starting with the geometry of Figure 36, we define the
following notations:

* P is anode of the mesh with neighbors (P;,P5,P3).
* N is the unit vector normal to the plane (P;,P;,P3).
* V;is the vector PP;.

» L;is the magnitude of V;.

1
.=

* t;is the unit vector parallelto V;: ¢

i

The vectors T; and ¢; can be represented on a unit sphere of center O (Figure 37 (a)).
Geometrically, the vector T; is the intersection of the unit vector ¢; with a sphere of diame-
ter N, the center of which is denoted by O;. Another way to define the vectors T; is to
observe that (T;,T,,T3) is the image by a spherical inversion of pole P of the points
(P1,P2,P3). The inversion maps the plane (P;,P;,P3) onto the sphere of diameter N.

The triplet of points (T;, T, T'3) defines a plane I Let d be the distance between the ori-
gin Oj of the sphere of diameter N and IT (Figure 37 (b)). We compute the simplex angle
as:

cosp = 2d) 14)

This definition gives an angle between 0 and w. The sign of the angle depends on
whether P is on the positive or negative side of the plane defined by its neighbors and the
normal vector N assumed to be pointing toward the outside of the object. This definition of
¢ can be computed more efficiently since it requires only three dot products and three nor-
malizations to compute the vectors T}, and another dot product to compute the distance to
I1 instead of the radii of a circumscribed sphere and a circumscribed circle using the defi-
nition of Section 3.4. It is also better conditioned in that when the surface becomes nearly
flat, the vectors T; converge toward the origin of the unit sphere and therefore d = 1/2 and
¢ = 0. By contrast, the sphere radius used in the previous definition goes to infinity as P
becomes close to the plane of its neighbors.

P
1 P,
P2 —-—
Figure 36 Geometry of Simplex Angle Computation

40

)

(a) Inversion of Unit Direction Vectors (b) Cross-Section of the Sphere of Diameter N

Figure 37 Configuration after Spherical Inversion

We now show that the angle calculated with this algorithm is indeed the same as the
angle defined in Section 3.4. The proof will proceed by expressing simplex angle @, as a
function of the vectors V;, to use the relation between V; and T; to express @, as a function
of vectors T}, and to identify the resulting expression as the definition used in the algo-
rithm presented above.

The original definition of ¢, can be written as:

°‘l

sing,, = - (15)

where r,, is the radius of the circle circumscribed to the triangle (P}, P,, P3), and r is the
radius of the sphere circumscribed to the tetrahedron (P, P, P3, P) (Figure 10). With the
current notations, we have:

L L3 (v x Va) + L3 (Vyx V) + L3 (v, x V||
2V, V5 V)

;=1 [Vi-Vall| Va- V||| V1- V3|
° 2|V, xV3+VyxV +V, XV,

(16)

where |V, V,, V| is the determinant of the three vectors. Let D be distance of P to the
plane of its neighbors, of nommal vector N. By definition,
D=V,-N =YV, -N =V, N,asymmetrical way of writing these equalities is:
[V, Vo Vi
[VaxV3+V3xV,+V, xV,|

D = an

Replacing the right-hand side of (17) by D in the expression of 7,/r obtained from (16),
we get:

41

d [V1- V|| Va- V5]l Vi- Vsl

(/]
— =Dy 2 2 (18)
r L2 (vax V) + L3 (vyx V) +L3(V, x V) |
Replacing V..V by D in the definition of T}, we get the relations:
D D
V.= ——T. V-Vl = ————IIT.-T. (19)

Substituting (20)the right-hand sides of (19) in (18), we get the new expression for the
ratio of radii:

T 1 T1-T ||| T2 Taf[|| T1- T

T T [Tox T+ TyxT, + T, Ty 20)

The right hand side of (20) is exactly twice the radius R of the circle circumscribed to the
triangle formed by the points T, T, and T'3. Therefore, from (15), sing, is equal to 2R.
Equivalently, cos@, is the distance between the origin and the plane I (Figure 38). There-
fore the two definitions of the simplex angle, sing = r_,/r and cos¢ = 2d, are equiva-
lent.

Figure 38 Relation Between ¢ and the Circumscribed Circle

42

